КАТУШКИ ИНДУКТИВНОСТИ И ТРАНСФОРМАТОРЫ
В этом уроке будут рассмотрены такие радиокомпоненты как катушки индуктивности и трансформаторы. То, что без них не обходится практически ни одно современное радиотехническое устройство, вы в этом убедитесь позже. Я постарался совместить рассказ о катушках индуктивности и трансформаторах переменного тока в одном уроке, именно потому что эти компоненты имеют много общего, соответственно и рассматривать их проще по аналогии друг с другом. Практическая работа будет весьма интересная и очень полезная, а именно, изготовление простейшего лабораторного блока питания (БП) с применением регулируемого параметрического стабилизатора. Из предыдущих уроков, вы наверное заметили что использовать батарейки не совсем удобно, да и не всегда есть под рукой батарейка с подходящим напряжением. Вот поэтому мы и займемся изготовлением универсального блока питания с регулируемым напряжением от 0,5 до 12В. На первых порах нам этого будет вполне достаточно.
Катушки индуктивности колебательных контуров
Катушки индуктивности обладают свойством оказывать реактивное сопротивление переменному току при незначительном сопротивлении постоянному току. Совместно с конденсаторами они используются для создания фильтров, осуществляющих частотную селекцию (способность выделять - отфильтровывать) электрических сигналов, а так же для создания элементов задержки сигналов и запоминающих элементов, осуществления связи между цепями через магнитный поток и т. д. В отличие от резисторов и конденсаторов они не являются стандартизованными изделиями, а изготавливаются для конкретных целей и имеют такие параметры, которые необходимы для осуществления тех или иных преобразований электрических сигналов, токов и напряжений. Функционирование катушек индуктивности основано на взаимодействии тока и магнитного потока. Известно, что при изменении магнитного потока в проводнике, находящемся в магнитном поле, возникает ЭДС, определяемая скоростью изменения магнитного потока. В колебательных контурах приемников радиолюбители обычно используют как готовые, так и самодельные катушки самых различных конструкций. Для намотки катушек кроме проводов марок ПЭВ, ПЭЛ, используют обмоточные провода таких марок: ПВО - провод в хлопчатобумажной одинарной оплетке; ШЛО - провод в шелковой одинарной оплетке; ПШД - то же в двойной оплетке; ПЭЛШО - провод в эмалевой лако - стойкой изоляции и шелковой одинарной оплетке. Многие катушки промышленных приборов намотаны так называемым литцендратом - проводом в эмалевой изоляции, которые скручены жгутом и все вместе имеют одинарную или двойную шелковую оплетку. Такой провод, если надо, можно самому свить с помощью дрели. Практически для контурных катушек самодельных приемников пригоден провод любой марки, лишь бы надежна была его изоляция, но не слишком толстый, иначе катушка получается громоздкой. Катушки, предназначенные для приема радиовещательных станций средневолнового и длинноволнового диапазонов, наматывают обычно проводом диаметром от 0,1 до 0,3 мм, коротковолновые - проводом 0,8-1 мм, ультракоротковолновые - проводом до 3 мм. Существует правило, которое надо запомнить: чем короче длина радиоволн, на которые рассчитывается катушка, тем более толстым проводом она должна быть намотана. Если имеется провод, диаметр которого неизвестен, его можно приближенно определить так: намотайте провод виток к витку на карандаш, а затем разделите длину намотки на число витков. Точность определения диаметра провода таким способом будет тем выше, чем больше намотано витков. Если нет провода того диаметра, который рекомендуется, но есть другой, близкого к нему диаметра, обычно его можно использовать. Так, например, вместо провода диаметром 0,18 мм можно использовать провод диаметром 0,15 или 0,2 мм. В зависимости от размеров каркасов и диапазона принимаемых радиоволн катушки содержат от нескольких витков до нескольких сотен витков. Чем длиннее радиоволны и чем меньше диаметр катушки, тем больше витков она должна содержать. Для детекторных (устройство и принцип работы детекторного приемника будет рассмотрен позже) приемников иногда рекомендуют однослойные катушки, намотанные на больших каркасах сравнительно толстым проводом. И это не случайно, в таких катушках меньше потерь высокочастотной энергии. А чем меньше этих потерь, тем лучше работает приемник. Катушки транзисторных и ламповых приемников чаще всего наматывают на каркасах сравнительно небольших размеров и более тонким, чем катушки детекторных приемников, проводом. При этом провод в длинноволновых катушках укладывают в несколько слоев. Это - многослойные катушки. Они компактнее однослойных. Потери высокочастотной энергии в таких катушках несколько больше, чем в катушках больших размеров, но они компенсируются введением в катушки высокочастотных сердечников, усилительными свойствами транзисторов, радиоламп. Многослойные катушки контуров многих промышленных приемников наматывают особым способом, носящим наименование универсаль. При такой намотке, имеющей должное взаимное пересечение витков, уменьшается внутренняя (межвитковая) емкость катушки, что увеличивает перекрытие контуром диапазона частот. Радиолюбители подобные катушки наматывают на бумажных или картонных шпульках внавал, умышленно не укладывая провод ровными рядами. При такой намотке внутренняя емкость катушки также относительно невелика. Для примера расскажу, как изготовить контурную катушку подобной конструкции, которую можно использовать для наиболее простого транзисторного или лампового радиоприемника - (рис. 1). Каркасом служит картонная трубка 18 - 20 мм. в диаметре, склеинная из плотной бумаги. Сама же катушка состоит из двух секций: L2 - основной и L1 - подстроечной. Бортики секции L2 - картонные кружки, надетые на каркас и приклеенные к нему. Наружный диаметр кружков 32 - 35 мм, внутренний - по диаметру каркаса, расстояние между ними 4 - 5 мм. Секция L1 намотана на шпульке, которая с небольшим трением может перемещаться по каркасу.
Рис. 1 Контурная катушка с подстроечной секцией.
Шпулька для нее делается так. Нужно обернуть каркас полоской плотной бумаги шириной 6 - 8 мм. Поверх полоски на каркас насаживаются картонные кружки, расположив их на растоянии 2 - 3 мм друг от друга. Не сдвигая кружков, их приклеивают к бумажному кольцу. Когда клей высохнет, осторожно обрезают выступающие наружу края бумажного кольца - получится шпулька. Для секций катушки подойдет провод диаметром 0,2 - 0,3 мм. с любой изоляцией. Секция L1 должна содержать 40 - 50 витков, намотанных внавал, а секция L2 - 250 - 260 витков, намотанных таким же способом, но с отводами от 50 - го и 150 - го витков. Отводы нужны для грубой настройки контура, в котором катушки будут работать. Выводы и отводы выпускайте наружу через проколы в картонных бортиках. Конец секции L1 соедини с началом секции L2. Индуктивность такой катушки зависит от взаимного расположения ее секций. Если витки обеих секций направлены в одну сторону и секция L1 вплотную придвинута к секции L2, индуктивность катушки наибольшая. В этом случае контур будет настроен на наименьшую частоту (наибольшую длину волны). По мере отдаления секции L1 от L2 общая индуктивность катушки станет уменьшаться, а приемник будет перестраиваться на большую частоту (более короткую волну). Секцию L1 можно снять с каркаса, перевернуть и надеть на каркас другой стороной. Теперь витки Секций катушки будут направлены в разные стороны, и если сближать их, то индуктивность катушки будет плавно уменьшаться, а контур настраиваться на станции, работающие на волнах меньшей длины. Таким образом, эта конструкция представляет собой простейший вариометр - катушку с переменной индуктивностью. Грубая настройка контура осуществляется переключением отводов секции а точная - изменением расстояния и расположения витков секции L1 относительно витков секции L2. Настроив контур на радиостанцию, можно шпульку секции L1 приклеить к каркасу - получится приемник с фиксированной настройкой на одну радиостанцию. Катушки подобных конструкций хороши тем, что они просты. Однако предпочтительнее катушки с высокочастотными сердечниками. Сердечник, повышающий добротность катушки и тем самым снижающий потери в ней, позволяет значительно уменьшить число витков и размеры катушки. А если сердечник подстроечный, т. е. может перемещаться внутри катушки, то он, кроме того, позволяет в некоторых пределах изменять индуктивность катушки и, таким образом, настраивать контур на нужную частоту. Самые распространенные магнитные высокочастотные сердечники - ферритовые и карбонильные. Их выполняют в виде стержней, колец, чашек. Одна из возможных конструкций самодельной секционированной катушки с подстроечным сердечником диаметром 9 мм показана на (рис. 2). Увеличение индуктивности катушки достигается ввертыванием сердечника в ее каркас, а уменьшение - вывертыванием его. Каркас для такой катушки склеивается из полоски плотной бумаги шириной 40 мм на круглой болванке, стеклянной трубке или пробирке диаметром 9,5 - 10 мм. На расстоянии 6 - 7 мм от верхнего края готового и хорошо высушенного каркаса острым ножом прорезается в нем с двух противоположных сторон прямоугольные отверстия. В местах вырезов каркас обматывается в один слой толстой ниткой; ее витки будут выполнять роль нарезки для ввертывания сердечника. Щечки катушки вырезаются из тонкого гетинакса, текстолита или плотного картона толщиной 0,3 - 0,5 мм., насаживаются на каркас и приклеиваются к нему. Катушка наматывается внавал проводом ПЭВ - 1 0,12 - 0,18 мм. Если катушка средневолновая, то она должна содержать всего 135 витков (три секции по 45 витков), а длинноволновая - 450 витков (три секции по 150 витков).
Рис. 2 Самодельная катушка с подстроечным сердечником. | Рис.3 Средневолновая (а) и длиноволновая (б) катушки с ферритовым стержнем. |
Сначала между двумя верхними щечками наматывается первая секция, переводится провод на участок между средними щечками и наматывается вторая секция, потом между нижними щечками наматывается третья секция. Выводы катушки пропускаются через проколы в щечках. Крепить такую катушку на панели приемника можно с помощью фанерного кольца, приклеенного к панели, или вклейкой нижнего конца каркаса в отверстие в панели. Катушку колебательного контура можно намотать на бумажной гильзе и насадить ее на отрезок ферритового стержня марки 400НН или 600НН диаметром 8 и длиной 25 - 30 мм (рис. 3). Для приема радиостанций средневолнового диапазона она должна содержать 70 - 80 витков провода ПЭВ - 1 0,12 - 0,2 мм, намотанных в один ряд, а для радиостанции длинноволнового диапазона - 225 - 250 витков такого же провода, но намотанных четырьмя - пятью секциями по 45 - 50 витков в каждой секции. Наибольшая индуктивность такой катушки будет тогда, когда она находится на середине ферритового стержня. По мере перемещения к одному из концов стержня индуктивность катушки уменьшается. Таким образом, перемещая катушку по стержню, можно подстраивать контур на необходимую частоту наиболее длинноволнового участка диапазона.
Рис. 4 Каркасы с ферритовыми кольцами и подстроечными стержневыми сердечниками.
Во многих промышленных приемниках используются катушки, намотанные на унифицированных (стандартных) пластмассовых секционированных каркасах с ферритовыми кольцами и стержневыми подстроечными сердечниками (рис. 4, а). Катушка, намотанная на таком каркасе, оказывается между двумя ферритовыми кольцами, увеличивающими ее индуктивность. Стержневой сердечник, скрепленный с резьбовым цилиндриком, можно ввертывать отверткой (отвертка должна быть из немагнитного материала) на разную глубину внутрь каркаса и тем самым подстраивать индуктивность катушки. Аналогичный самодельный каркас, который может быть использован для катушек различного назначения, показан на (рис. 4, б). Для изготовления его нужны два кольца из феррита марки 600НН с внешним диаметром 8 - 9 и внутренним 3 - 3,5 мм и стержневой подстроечный сердечник той же марки диаметром 2,7 и длиной 15 мм. Основой каркаса служит бумажная гильза длиной 12 мм и диаметром, равным внутреннему диаметру колец. Кольца приклеиваються клеем БФ - 2 к гильзе на расстоянии 6 мм. Выступающий снизу конец гильзы будет вставлятся в отверстие монтажной платы (или шасси) и приклеиваться к ней. Подстроечный сердечник удерживается внутри каркаса бумажной или матерчатой прокладкой. Число витков и провод для катушки, намотанной на такой каркас, зависит от ее назначения.
Трансформаторы - трансформация переменного тока
Переменный ток выгодно отличается от постоянного тока тем, что он хорошо поддается трансформированию, т.е. преобразованию тока относительно высокого напряжения в ток более низкого напряжения, или наоборот. Трансформаторы позволяют передавать переменный ток по проводам на большие расстояния с малыми потерями энергии. Для этого переменное напряжение, вырабатываемое на электростанциях генераторами, с помощью трансформаторов повышают до напряжения в несколько сотен тысяч вольт и посылают по линиям электропередачи (ЛЭП) в различных направлениях. С повышением напряжения уменьшается сила тока в ЛЭП при одной и той же передаваемой мощности, что и приводит к снижению потерь и позволяет применять провода меньшего сечения. В городах и селах на расстоянии сотен и тысяч километров от электростанций это напряжение понижают трансформаторами до более низкого, которым и питают лампочки освещения, электродвигатели и другие электрические приборы. Трансформаторы широко применяют и в радиотехнике. Схематическое устройство простейшего трансформатора показано на (рис. 5). Он состоит из двух катушек из изолированного провода, называемых обмотками, насаженных на магнитопровод, собранный из пластин специальной, так называемой трансформаторной стали. Обмотки трансформатора изображают на схемах так же, как катушки индуктивности, а магнитопровод - линией между ними. Действие трансформатора основано на явлении электромагнитной индукции. Переменный ток, текущий по одной из обмоток трансформатора, создает вокруг нее и в магнитопроводе переменное магнитное поле. Это поле пересекает витки другой обмотки трансформатора, индуцируя в ней переменное напряжение той же частоты. Если к этой обмотке подключить какую - либо нагрузку, например лампу накаливания, то в получившейся замкнутой цепи потечет переменный ток - лампа станет гореть. Обмотку, к которой подводится переменное напряжение, предназначаемое для трансформирования, называют первичной, а обмотку, в которой индуцируется переменное напряжение - вторичной.
Рис. 5 Трансформатор с магнитопроводом из стали: а - усторйство в упрощенном виде; б - схематическое изображение.
Напряжение, которое получается на концах вторичной обмотки, зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке приблизительно равно напряжению, подведенному к первичной обмотке. Если вторичная обмотка трансформатора содержит меньшее число витков, чем первичная, то и напряжение ее меньше, чем напряжение, подводимое к первичной обмотке. И наоборот, если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подводимого к первичной обмотке. В первом случае трансформатор будет понижать, во втором повышать переменное напряжение. Напряжение, индуцируемое во вторичной обмотке, можно довольно точно подсчитать по отношению чисел витков обмоток трансформатора: во сколько раз она имеет большее (или меньшее) число витков по сравнению с числом витков первичной обмотки, во столько же раз напряжение на ней будет больше (или меньше) по сравнению с напряжением, подводимым к первичной обмотке. Так, например, если одна обмотка трансформатора имеет 1000 витков, а вторая 2000 витков, то, включив первую обмотку в сеть переменного тока с напряжением 220 В, мы получим во второй обмотке напряжение 440 В - это повышающий трансформатор. Если же напряжение 220 В подвести к обмотке, имеющей 2000 витков, то в обмотке, содержащей 1000 витков, мы получим напряжение 220 В - это понижающий трансформатор. Обмотка, имеющая 2000 витков, в первом случае будет вторичной, а во втором случае - первичной. Но, пользуясь трансформатором, вы не должны забывать о том, что мощность тока (P = UI), которую можно получить в цепи вторичной обмотки, никогда не превышает мощности тока первичной обмотки. Это значит, что получить от вторичной обмотки одну и ту же мощность можно, повышая напряжение и уменьшая ток, либо потребляя от нее пониженное напряжение при увеличенном токе. Следовательно, повышая напряжение мы проигрываем в значении тока, а выигрывая в значении тока, обязательно проигрываем в напряжении. Для питания радиоаппаратуры от сети переменного тока часто используют трансформаторы с несколькими вторичными обмотками с различным числом витков (рис. 6).
Рис. 6 Примеры промышленных трансформаторов.
С помощью таких трансформаторов, называемых сетевыми, или трансформаторами питания, получают несколько напряжений, питающих разные цепи. Наибольшая мощность тока, которая может быть трансформирована, зависит от размера магнитопровода трансформатора и диаметра провода, из которого выполнены обмотки. Чём больше объем магнитопровода, тем большая мощность может быть трансформирована. Практически же в трансформаторе всегда бесполезно теряется часть мощности. Поэтому мощность в цепи вторичной обмотки (или сумма мощностей, получаемых от всех вторичных обмоток) всегда несколько меньше мощности, потребляемой первичной обмоткой. Нужно запомнить: трансформаторы постоянный ток не трансформируют. Если, однако, в первичной обмотке трансформатора течет пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение, частота которого равна частоте пульсаций тока в первичной обмотке. Это свойство трансформатора используется для индуктивной связи между разными цепями, разделения пульсирующего тока на его составляющие и ряда других целей, о которых разговор будет впереди. Все трансформаторы со стальными магнитопроводами и магнитопроводами из железоникелевых сплавов (пермаллоя) называют низкочастотными трансформаторами, так как они пригодны только для преобразования переменного напряжения низкочастотного диапазона. На схемах низкочастотные трансформаторы обозначают буквой Т, а их обмотки - римскими цифрами. Принцип действия высокочастотных трансформаторов, предназначаемых дня трансформации колебаний высокой частоты, также основан на электромагнитной индукции. Они могут быть как с сердечниками, так и без сердечников. Их обмотки (катушки) располагают на одном или разных каркасах, но обязательно близко одну к другой (рис. 7). При появлении тока высокой частоты в одной из катушек вокруг нее возникает переменное магнитное поле, которое индуцирует во второй катушке напряжение такой же частоты. Как и в низкочастотных трансформаторах, напряжение во вторичной катушке зависит от соотношения чисел витков в катушках.
Рис. 7 Высокочастотные трансформаторы без сердечников (слева - катушки трансформатора с общим каркасом; справа - катушки трансформатора на отдельных каркасах; в центре - обозначение на схемах). | Рис. 8 Высокочастотные трансформаторы с магнитодиэлектрическими сердечниками (слева со - стержневым, справа с кольцевым (тороидальным) сердечником). |
Для усиления связи между катушками в высокочастотных трансформаторах используют сердечники в виде стержней или колец (рис. 8), представляющие собой спрессованную массу из неметаллических материалов. Их называют магнитодиэлектрическими или высокочастотными сердечниками. Наиболее распространены ферритовые сердечники. Ферритовый сердечник не только усиливает связь между катушками, но и повышает их индуктивность, поэтому они могут иметь меньше витков по сравнению с катушками трансформатора без сердечника. Магнитодиэлектрический сердечник высокочастотного трансформатора не зависимо от его конструкции и формы обозначают на схемах так же, как магнитопровод низкочастотного трансформатора, - прямой линией между катушками, а обмотки, как и катушки индуктивности, - латинскими буквами (L).
Практическая работа
Как я говорил в предисловии к уроку, займемся конструированием универсального радиолюбительского блока питания.
В первую очередь определимся со схемой. Естественно за ней далеко ходить не нужно, она находится в разделе этого сайта, схемы начинающим , в самом низу, которая так и называется Простой регулируемый блок питания. Там же и его подробное описание с возможной заменой применяемых радиоэлементов. Затруднений при его изготовлении у вас не должно возникнуть, т. к. все то, из чего состоит схема представленного БП нам по предыдущим урокам хорошо знакомо и изучено, я надеюсь. Принципы работы отдельных его узлов мы тоже рассматривали. Единственное что здесь может вызвать затруднение в понимании, это усилительный каскад, собранный на транзисторах VT2 и VT3. Пока принимайте это как должное, подобные схемы и примеры в дальнейшем мы будем рассматривать и тогда к вам придет миг озарения. Здесь главное при монтаже не допустить ошибок. По поводу монтажа: - вообще всю эту конструкцию можно смонтировать не на печатной плате как предлагается, (хотя это идеальный вариант, основы печатного монтажа можно изучить здесь ) а на кусочке плотного картона (пресшпанте), при условии, что вы будете эксплуатировать его в домашних условиях, т. е. в условиях с нормальной влажностью. Делается это просто. Размещаются все радиоэлементы на картонке определенного размера (который зависит от габаритов применяемых радиодеталей и будущего корпуса), кроме трансформатора и выходного транзистора VT3, т. к. трансформатор крепится отдельно к шасси корпуса, а транзистор на радиаторе (дюралевая пластина). Радиатор транзистора VT3 должен быть изолирован от корпуса, если он металлический. Далее в местах выводов радиоэлементов с помощью тонкого шила прокалываются отверстия в которые вставляются выводы радиоэлементов. После того как вставили деталь в отверстие выводы нужно разогнуть в стороны, чтобы деталь не выпадала из отверстий при дальнейших манипуляциях с т. н. платой. После этого остается с помощью проводников с обратной стороны нашей картонки (со стороны загнутых выводов) распаять все радиодетали в соответствии со схемой. Про основы качественной пайки можно прочитать здесь . Отдельно остановлюсь на трансформаторе и микроамперметре: в этом блоке питания можно применить любой трансформатор мощностью от 20 до 60 Вт., с переменным напряжением на вторичной обмотке от 12 до 14 В. Например; очень хорошо для данной конструкции подходит ТВК 110 - трансформатор кадровой развертки от старых, ламповых черно - белых телевизоров. Для ориентира см. (рис. 9, 10).
Рис. 9 Вид сверху. | Рис. 10 Вид сбоку. |
Микроамперметр; который применяется здесь в качестве вольтметра, можно выдрать из любого старого бобинного магнитофона или ему подобных, который там применяется в качестве индикатора уровня сигнала, с любым током отклонения, потому как с помощью добавочного резистора R6 (подбирается экспериментально, в зависимости от используемого микроамперметра) мы сможем отрегулировать границы показания максимального предела измеряемого напряжения. И еще, у вас конечно возникнут затруднения с проверкой и контролем выходного напряжения, потому как мы еще не изучали основные приемы работы с такими измерительными приборами как вольтметр, амперметр и омметр. Здесь страшного ничего нет, потому что в разделе измерения , размещена подробная статья, как с помощью недорогого цифрового китайского тестера измерять все необходимые нам входные и выходные параметры, а так же методика подбора добавочного резистора к микроамперметру применяемого в качестве вольтметра. Можно пойти и более простым путем, отказавшись от микроамперметра и просто зделать контрольные надписи напротив метки регулятора напряжения.Приступайте и помните что на первичной обмотке трансформатора будет находиться переменное напряжение в 220 В, КОТОРОЕ ОПАСНО ДЛЯ ЖИЗНИ, поэтому перед тем как начинать сборку БП повторите еще раз элементарные правила техники безопасности !
Переходим к следующему уроку !